Performance, Portability & Productivity

Rakshith Krishnappa, Developer Evangelist @Intel
rakshith.krishnappa@intel.com

intel.

Performance, Portability and Productivity

01/12/2022

02/09/2022

03/09/2022

03/16/2022

DPC++

Introduction to Performance, Portability and Productivity
for HPC

Optimization Best Practices using SYCL

Optimization for Performance Portability across CPU and
GPU

Performance, Portability and Productivity — Mini
Hackathon

intel.

2

What will you learn in this Learning Series

Session 1 (Jan 12t 2022)

» Understand why Performance, Portability and Productivity are important for
HPC

* |dentify an algorithm and implement using Math Kernel Library and check for
performance on CPUs and GPUs

* Implement the same algorithm using basic SYCL programming
* Analyze results using Intel Advisor Roofline and Intel VTune Profiler
« We will do all this on Intel DevCloud on the following CPUs and GPUs:

* Intel® Xeon® E-2176G Processor with GEN9 GT2 Graphics
* Intel (R) Core (TM) i9-10920X with Iris XE Max discrete Graphics
* Intel® Xeon® Gold 6128 Processor

e |ntel® Xeon® Platinum 8153 Processor

3

What will you learn in this Learning Series

Session 2 (Feb 9t 2022)

Use SYCL features to tune the basic algorithm.

Learn about using ND_Range kernels and impact of work-group size

Use private memory and shared local memory to improve performance

Analyze results using Intel Advisor Roofline and Intel VTune Profiler

What will you learn in this Learning Series

Session 3 (Mar 9th 2022)

DPC++

Optimize algorithm for Performance Portability across CPUs and GPUs

Analyze results using Intel Advisor Roofline and Intel VTune Profiler and
compare all algorithm implementations.

Understand different accelerator hardware characteristics and further optimize
algorithm

Understand impact of accelerator Occupancy and impact of varying Work-
group sizes

Resources for more advanced tuning using the oneAPI GPU optimization guide

intel.

What will you learn in this Learning Series

Session 4 (Mar 16th 2022)

* Mini-Hackathon and working session, bring your own code, share and ask us
any questions.

« We will have a bunch of Intel experts with hardware architecture , SYCL
language experts, Performance tuning experts and Tools experts.

* We will have break-out rooms to work with Intel experts.

6

Programming Challenges

for Multiple Architectures

Application Workloads Need Diverse Hardware

[[[[[
[o [
[o [
[o [
O0oo0od

Scalar Vector Spatial Matrix

Growth in specialized workloads
Middleware & Frameworks

Variety of data-centric hardware required

Separate programming models and toolchains for each U _— T Other accel.
architecture are required today programming | programming | programming | programming

Software development complexity limits freedom of
architectural choice

Other accel.

DPC++ intel.

Introducing

oneAP|

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

DPC++

Application Workloads Need Diverse Hardware

A m e &8

Scalar Vector Spatial Matrix

Middleware & Frameworks

Industry Intel
Initiative Product

oneAPI

Other accel.

intel.

8

Data Parallel C++

Standards-based, Cross-architecture Language
DPC++ =|SO C++ and Khronos SYCL

Parallelism, productivity and performance for CPUs and
Accelerators

= Delivers accelerated computing by exposing hardware features

= Allows code reuse across hardware targets, while permitting custom tuning for
specific accelerators Community Extensions

= Provides an open, cross-industry solution to single architecture proprietary lock-in

Based on C++and SYCL Khronos SYCL

= Delivers C++ productivity benefits, using common, familiar C and C++ constructs

Direct Programming:
Data Parallel C++

» |ncorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

Community Project to drive language enhancements
» Provides extensions to simplify data parallel programming
= Continues evolution through open and cooperative development

Apply your skills to the next innovation, not rewriting

software for the next hardware platform

The open source and Intel DPC++/C++ compiler supports Intel CPUs, GPUs, and FPGAs. =
DPC++ Codeplay announced a DPC++ compiler that targets Nvidia GPUs. |nte|3

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

Data Parallel C++

DPC++ Essentials Learning Path:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
DPC++ Book:
https://www.apress.com/us/book/9781484255735
oneAP| GPU Optimization Guide:

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-
optimization-guide/top/intro.html

DPC++ intel 1o

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/dpc-essentials.html
https://www.apress.com/us/book/9781484255735

SYCL 2020

Specification:

https://www.khronos.org/registry/SYCL /specs/sycl-2020/pdf/sycl-2020.pdf

DPC++ intel i

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

SYCL 2020 Specification

SYCL.

* The SYCL 2020 specification was released on February 9, 2021

= Several major features, including:
* Unified shared memory
» Reductions
* Modern atomics
* Sub-groups
* Group algorithms (e.g. reductions, scans)

* Extension and interoperability mechanisms

DPC++ intel.

DPC++ Extensions now part of SYCL 2020

Many of DPC++ Extensions became part of SYCL 2020
specification:

* Unified Shared Memory (USM)

* Sub-Groups

* Reductions
DPC++ now adopts the SYCL 2020 syntax for the above
features.

+++++

intel

Unified Shared Memory in SYCL 2020

Unified Shared Memory(USM) is now part of SYCL 2020, No changes
In USM syntax.

Accessible | Accessible

Type Description on Host? | on Device?
Allocations in device memory.

sycl::malloc device o _
- Programmer must explicitly transfer data between host and device.

Allocations in host memory.

sycl::malloc host _ _
- Kernels can access these allocations directly.

Allocations can migrate between host and device memory.

sycl::malloc_shared Different implementations may provide different guarantees
- regarding whether allocations can be accessed by host and device
concurrently.

DPC++ intel L5

Sub-Groups in SYCL 2020

Sub-Groups are now part of Before
SYCL 2020 SpeCiﬁcatiOn : tONEAPI::sub_group sg = item.get sub_group();

::ext::oneapi::sub _group sg = item.get sub_group();

sub_group class

A sub-group handle can be
obtained from an nd_item
USiﬂg gEt SUb_gI"OUp() ::sub_group sg = item.get sub group();

sg = item.get sub_group();

DPC++ intel

Sub-Groups in SYCL 2020

DPC++ Sub-Groups Shuffles are now part of SYCL 2020 Sub-Group
“Group Algorithms” free functions instead of member functions.

DPC++

Old DPC++ Compiler

.shuffle down(x, 1);

.shuffle up(x, 1);

.shuffle(x, id);

.shuffle xor(x, mask);

Current DPC++ Compiler (SYCL 2020)

::shift _group left(sg, x, 1);

::shift _group right(sg, x, 1);

::select_from group(sg, x, id);

: :permute_group_ by xor(sg, x, mask);

intel

Sub-Groups in SYCL 2020

DPC++ Sub-Groups Collective are now part of SYCL 2020 Sub-Group
“Group Algorithms” with function name changes.

Old DPC++ Compiler

broadcast(sg, x, id);

reduce(sg, X, op);
exclusive scan(sg, x, op);
inclusive scan(sg, X, op);
any off(sg, x);

all off(sg, x);
none_off(sg, Xx);

DPC++

Current DPC++ Compiler (SYCL 2020)
group_broadcast(sg, x, id);
reduce_over_group(sg, X, op);
exclusive scan_over_group (sg, X, op);
inclusive_scan_over_group (sg, X, op);
any_off_group(sg, X);
all off group(sg, Xx);

none_off group(sg, x);

intel.

17

Reductions in SYCL 2020

DPC++ introduced a

. . g.parallel for(nd_range<1>{N, B}, Before
dedlcated abStraCtlon sycl::ext::oneapi::reduction(sum, @, sycl::ext::oneapi::plus<>()),
. nd item<1> it, auto& tmp
for reduction kernels. it § = iteet sl 1(0),

tmp += data[i];
}).wait();

This is now part of
SYCL ZOZO q.parallel for(nd_range<i>{N, B},

sycl::reduction(sum, @, sycl::plus<>()), [=](nd_item<1> it, auto& tmp) {

int 1 = 1t.get global 1d(9);

tmp += data[i];
}).wait();

DPC++ intel.

Reductions in SYCL 2020

Below example shows changes in reductions in SYCL2020 when using
USM and Buffers

Old DPC++ SYCL 2020

USM ext::oneapi::reduction(sum, ext::oneapi::plus<>()) sycl::reduction(sum, sycl::plus<>())

Buffers ext::oneapi: :r‘eduction(ext::oneapi::plus<>()) sycl: :r‘eduction(sycl::plus<>())

19

Reductions in SYCL 2020

SYCL 2020 specification
extends kernel reductions
even further by allowing

multiple reductions in a T esion i, reducsion s,
single kernel.

auto reduction_min = sycl::reduction(min, sycl::minimum<>());

auto reduction_max = sycl::reduction(max, sycl::maximum<>());

[=](nd_item<1> it, auto& tmp_min , auto& tmp_max) {

int i = it.get_global_id(9);
tmp_min.combine(data[i]);

tmp_max.combine(data[i]);

}).wait();

DPC++

intel.

20

Intel” oneAP|
Toolkits Free .
Availability L, oowrtoass

i - intel.
Get Started Quickl = o In
Code Samples, Quick-starguides, Wet}i/nars, Training DeVC | O U d

software.intel.com/oneapi

Run the tools locally Run the tools in the Cloud

DPC++ |nl:e|

software.intel.com/oneapi

oneAPI Available on

\ intel
Intel DevCloud BZVC|Oud (B

1 Minute to Code
A development sandbox to develop, test
and run workloads across a range of

Intel CPUs, GPUs, and FPGASs using No Hardware Acquisition
Intel’s oneAPI software.

No Download, Install or Configuration

Get Up & Running In Seconds!

Easy Access to Samples & Tutorials
software.intel.com/devcloud/oneapi

Support for Jupyter Notebooks, Visual Studio Code

DPC++ intel. =2

https://software.intel.com/en-us/devcloud/oneapi

Intel DevCloud

* Login to Intel DevCloud - devcloud.intel.com/oneapl
* Get Started -> Launch Jupyter Lab option
» Start Terminal and enter command to copy latest content

» /data/oneapi_workshop/get jupyter notebooks.sh

DPC++ intel e

L egal Notices and Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

Performance results are based on testing as of the publication date of the referenced papers and may not reflect all publicly available security updates. See
configuration disclosure for details. No product can be absolutely secure.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm
whether referenced data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

DPC++ intel®

http://www.intel.com/benchmarks

